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ABSTRACT

The Rayleigh-Schrgdinger perturbation energies En for the
groihd 1S state of the Hooke law model atom are calculated through
tenth order. The En are expressed as singly infinite sums whose
terms are obtained from recurrence relations. Very slow convergence
limited the method to ElO and below.

The results are compared with those of Midtdal (1965) for
helium-like atoms, and it appears that the convergence of the Hooke

series is more rapid. However, no persistent patterns are observable

in the Hooke En through E10 .
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1. Introducticn

The Hooke's law model for a two-electron atom is essentially a
helium-like atom in which the Coulomb attraction of the nucleus is

replaced bf a Hooke's law force, resulting in the Hamiltorian
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In atomic units (e:‘ﬁ;ﬂp:l), letting the frequency W= 22,
A= 1/2 , and with the scale change .~ ri/Z , the Schrodinger
~E- ~
equation can be written in the form analogous to the Z-reduced

helium equation
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The Hooke model atom for helium has been studied previously by
Kestner and Sinanoglu2 andby White and Byers Brown1 in the hope of
2iding the solution of the Schr;dinger equation for helium. In this

report we are again concerned with the perturbation expansion of the

lowest eigenvalue E in powers of x s

 n
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There is considerable interest in this series stemming from the work
of Scheyrand Knight3 and of Midtda14, who obtained accurate numerical

approximations to the En for helium through 13th and 2lst orders



respectively. Stillinger5 has used these results to deduce the nature
and position of the singularity determining the radius of convergence
of the series. Also the most recent attempt:s6 to obtain analytic
solutions of the Schrgdinger équation for helium lead to perturbation-
like serieé for the eigenvalue E .

The object of the present work is to find the perturbation
energies En for the ground state of the Hooke model. The first
two energies are easy to obtain, and E2 and E3 have also been
evaluated analyticallyl. However, although equation (2) is separable
into ordinary differential equations, the exact lowest eigenvalue
E(A) 1is not known analytically as a function of A . The equations
of Rayleigh-Schrgdinger perturbation theory are therefore employed

to find the E
n

2. Perturbation Equations

. . 1,2 . .
Equation (2) is separable )2 in centre of mass and relative

coordinates
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where A = A/d> and

E(M = £+ elh), 6)

The eigenvalue €& of (5) can be expanded as a power series in,/\ R

A n
€ = ::Z j\_ 6;1 ) v 7
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and the perturbation energies (3) are then given by
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The perturbed equation (5) can be written
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where
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The lowest unperturbed solution is
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The nth order perturbation equation is7
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The normalization is chosen so that <%¢°> =1 for all A , Or

Ny o> = S, (13)

This leads to an especially simple form for the perturbation energies:
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Substitution of Yy = Fu ¥, into (12) leads
" el n )y as
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We seek a solution for Fn in the form of a power series

o
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which leads to a recursion relation for the <t (n =1, k>0),
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Since Y} is normalized, F, =1 and céo) - & which

0 k0 °

initiates the recursion. Substitution of (16) into (13) and (14)

yields
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where we have used
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For computational purposes it is convenient to re-write the

recursion relation (1l7) in terms of

(wy
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D‘k = ‘E_(z))‘C{ B (21)
which leads to (k> 0)
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To initiate the recursion we set D&— 2-,72.8{;Z and calculate

Dél) for k2 1 from (22). Then Dé ) can be found from (19),

that is

(24)
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which allows the D (k > 0) to be calculated, and so on. The

perturbation energies are given by the sum
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3. Analytic Results

The first-order energy is

¢, = = 1128379167

and the first-order coefficients are easily found to be1
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By substituting in (25) and summing, or by writing in closed form

and integratingl, it can be shown that
- & I 1ol N
€ ="Z(eq2+1-L)= —0.155782 , @8
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where C: is Catalan's constant.

4. Summation Technique

The series (24) and (25) are alternating in general (as for
n = 1, equation (26)) and their finite partial sums oscillate
wildly and converge very slowly, typically like G"y&/ﬂi (as for
n &1, equation (27)). The evaluation of the €, therefore presents
a problem, even with a large computer, as a convergence rate of at
least k-3 is desirable. However, since adjacent partial sums
bracket the limit, an average is a better egtimate than the partial
sums themselves.

Consider the series with partial sum

N
Sy = 2 P, (30)

and assume that limit SN = § exists. (31)
N->o0



Define the average

§N = gN"t_SN—I

Then clearly

limit SN = S . (33)
N = oo

Although the sequencesi\sﬁg and iigﬁk converge together to the same

limit S , if the terms ])k alternate in sign, S is a much

N
better estimate of the limit than SN . This is because
2
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Notice that in this case the difference S _ - S, still alternates,

N N-1




so that still better estimates msy be obtained by averaging the SN .

Let
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However, the sequence g‘SN} converges still more rapidly to S .

We have

—g - § = Dr\{"“ 2DN>! +~DM~'I_

N N-t T . (39)
Y
1f D‘k is given by (35), then
— N
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which converges fast enough to justify computer treatment,
The evaluations of all the sums in this work were done using

equation (37).
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5. Computer Program

The program was written in ALGOL and run on a2 minimum-configuration
Burroughs B-5500 Disk System. It is conversive and is run from a
remote teletype console. The number of En investigated and the
number of terms in the partial sums may be varied at run time up to a
maximum of 1020, but if they result in creation of more intermediate

data than can fit into the computer's actual memory, the program

5 ()

0 depend on

becomes grossly inefficient. ©Note that since the

all the DIE“)

(k=1,2,--+), it is necessary to re-run the program to
find the effect of adding an extra term to the partial sum.

The method of Section 4 solves the problem c¢f slow convergence,
but does not alter the loss of figures inherent in a series whose
sum is much smaller than the size of the individual terms. Thus as
the En get smaller, their accuracy decreases.

The accuracy of the approximation is determined by observing the
sensitivity of the approximate En to small changes in the number
of terms in the summation. The largest number used in calculations
through E8 was 1020 terms, and for E9 and E10 was 501 terms.

Although the twice-averaged sums, (37), still appeared to
bracket the limit, there was no advantage to be gained in repeating
the averaging, as round-off errors determined the accuracy of the
higher En . The use of double-precision arithmetic would have

reduced the number of possible terms by half.
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6. Results and Discussion

Table I presents the calculated En , defined by (3), which
are believed accurate to the number of figures quoted. The previously
found analytic values are listed as a check, and Midtdal's4 results
for the ground state of helium are given for comparison to demonstrate
the convergence. Table 11 lists actual program results tc demonstrate
the convergence.

In comparing the Hooke and helium results in Table V, it must
be remembered that there is an arbitrariness in the choice of the
Hook law frequency W in equation (1). If instead of setting
W= 21 , we had put = 1.9-!-21 , then the resulting eigenvalue

E{(&A,k) would be related to E(A) by

R
E'(&J}\) - EOVEE) . (41)

The perturbation energies Ea in the power series expanscéw in A

would then be related to those for Wb = 1 by

|~B
4 2
E, = JSuTF,. (42)

A sensible choice for comparing the Hooke and Coulombic 2-electron
atoms is Jl» = 16/97 = 0.565884, which was used by Kestner and
Sinanogluz. This value minimizes the l-election atom energy for a
Gaussian trial wave function. However, to compare the rate of

convergence the most natural choice is Sh = 1/3, which makes
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EO = 1 = “E, - The resulting coefficients Eé calculated from
(42), are given in the third column of Table 1.

The following features emerge from the compariscn of the third and

&00«”?& columns of Table 1:

(a) The rate of convergence in the Hooke case appears to be a
good deal more rapid than for helium,

(b) Whereas the helium En are all negative after EB , no
pattern appears to have set in for the first eleven Hocke E; .

(c) Whereas the ratios r = En/En ., for the helium increase

n =1

slowly and steadily after n = 6 , the Hooke ratias show no pattern.

The asymptotic behaviour of E()) appears to pe’

L -6
E o~ __% ,‘,%*—3— +~0(XN ), (A= =D, (any

It is therefore clear that the power series (3) must have a finite
radius of convergence, say X,_o The question arises as to the
nature of the singularity at )*_ . Equation (43) suggests that
the singularity may be a branch point of order 2/3. Unfortunately
the perturbation energies through ElO do not appear tc provide any
information about the singularity. TFrom Midtdal's4 accurate

variational values for the E of helium through n = 21,
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Stillinger5 was able to deduce the existence of a branch point
singularity of order about 6/5 (1.206 + 0.03) at X*= 1.1184 4 0.003.
On the other hand, the Hooke model is described essentially by an
ordinary differential equation, (5), and should be susceptible to
rigorous analysis. Although the Hooke model is bound for all A s
whereas the helium-1like atom is unbound for large positive A s
analysis of the )\* singularity in the Hooke case may help to

clarify that in helium.
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